Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz. j. otorhinolaryngol. (Impr.) ; 89(3): 469-476, May-June 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1447713

RESUMO

Abstract Objective To explore whether Cyclic Adenosine Monophosphate (cAMP)-Epac1 signaling is activated in 1-Desamino-8-D-arginine-Vasopressin-induced Endolymphatic Hydrops (DDAVP-induced EH) and to provide new insight for further in-depth study of DDAVP-induced EH. Methods Eighteen healthy, red-eyed guinea pigs (36 ears) weighing 200-350 g were randomly divided into three groups: the control group, which received intraperitoneal injection of sterile saline (same volume as that in the other two groups) for 7 consecutive days; the DDAVP-7d group, which received intraperitoneal injection of 10 mg/mL/kg DDAVP for 7 consecutive days; and the DDAVP-14d group, which received intraperitoneal injection of 10 μg/mL/kg DDAVP for 14 consecutive days. After successful modeling, all animals were sacrificed, and cochlea tissues were collected to detect the mRNA and protein expression of the exchange protein directly activated by cAMP-1 and 2 (Epac1, Epac2), and Repressor Activator Protein-1 (Rap1) by Reverse Transcription (RT)-PCR and western blotting, respectively. Results Compared to the control group, the relative mRNA expression of Epac1, Epac2, Rap1A, and Rap1B in the cochlea tissue of the DDAVP-7d group was significantly higher (p< 0.05), while no significant difference in Rap1 GTPase activating protein (Rap1gap) mRNA expression was found between the two groups. The relative mRNA expression of Epac1, Rap1A, Rap1B, and Rap1gap in the cochlea tissue of the DDAVP-14d group was significantly higher than that of the control group (p< 0.05), while no significant difference in Epac2 mRNA expression was found between the DDAVP-14d and control groups. Comparison between the DDAVP-14d and DDAVP-7d groups showed that the DDAVP-14d group had significantly lower Epac2 and Rap1A (p< 0.05) and higher Rap1gap (p < 0.05) mRNA expression in the cochlea tissue than that of the DDAVP-7d group, while no significant differences in Epac1 and Rap1B mRNA expression were found between the two groups. Western blotting showed that Epac1 protein expression in the cochlea tissue was the highest in the DDAVP-14d group, followed by that in the DDAVP-7d group, and was the lowest in the control group, showing significant differences between groups (p< 0.05); Rap1 protein expression in the cochlea tissue was the highest in the DDAVP-7d group, followed by the DDAVP-14d group, and was the lowest in the control group, showing significant differences between groups (p< 0.05); no significant differences in Epac2 protein expression in the cochlea tissue were found among the three groups. Conclusion DDAVP upregulated Epac1 protein expression in the guinea pig cochlea, leading to activation of the inner ear cAMP-Epac1 signaling pathway. This may be an important mechanism by which DDAVP regulates endolymphatic metabolism to induce EH and affect inner ear function. Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence Level 5.

2.
Braz J Otorhinolaryngol ; 89(3): 469-476, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37116375

RESUMO

OBJECTIVE: To explore whether Cyclic Adenosine Monophosphate (cAMP)-Epac1 signaling is activated in 1-Desamino-8-D-arginine-Vasopressin-induced Endolymphatic Hydrops (DDAVP-induced EH) and to provide new insight for further in-depth study of DDAVP-induced EH. METHODS: Eighteen healthy, red-eyed guinea pigs (36 ears) weighing 200-350 g were randomly divided into three groups: the control group, which received intraperitoneal injection of sterile saline (same volume as that in the other two groups) for 7 consecutive days; the DDAVP-7d group, which received intraperitoneal injection of 10 mg/mL/kg DDAVP for 7 consecutive days; and the DDAVP-14d group, which received intraperitoneal injection of 10 µg/mL/kg DDAVP for 14 consecutive days. After successful modeling, all animals were sacrificed, and cochlea tissues were collected to detect the mRNA and protein expression of the exchange protein directly activated by cAMP-1 and 2 (Epac1, Epac2), and Repressor Activator Protein-1 (Rap1) by Reverse Transcription (RT)-PCR and western blotting, respectively. RESULTS: Compared to the control group, the relative mRNA expression of Epac1, Epac2, Rap1A, and Rap1B in the cochlea tissue of the DDAVP-7d group was significantly higher (p <  0.05), while no significant difference in Rap1 GTPase activating protein (Rap1gap) mRNA expression was found between the two groups. The relative mRNA expression of Epac1, Rap1A, Rap1B, and Rap1gap in the cochlea tissue of the DDAVP-14d group was significantly higher than that of the control group (p <  0.05), while no significant difference in Epac2 mRNA expression was found between the DDAVP-14d and control groups. Comparison between the DDAVP-14d and DDAVP-7d groups showed that the DDAVP-14d group had significantly lower Epac2 and Rap1A (p <  0.05) and higher Rap1gap (p < 0.05) mRNA expression in the cochlea tissue than that of the DDAVP-7d group, while no significant differences in Epac1 and Rap1B mRNA expression were found between the two groups. Western blotting showed that Epac1 protein expression in the cochlea tissue was the highest in the DDAVP-14d group, followed by that in the DDAVP-7d group, and was the lowest in the control group, showing significant differences between groups (p <  0.05); Rap1 protein expression in the cochlea tissue was the highest in the DDAVP-7d group, followed by the DDAVP-14d group, and was the lowest in the control group, showing significant differences between groups (p <  0.05); no significant differences in Epac2 protein expression in the cochlea tissue were found among the three groups. CONCLUSION: DDAVP upregulated Epac1 protein expression in the guinea pig cochlea, leading to activation of the inner ear cAMP-Epac1 signaling pathway. This may be an important mechanism by which DDAVP regulates endolymphatic metabolism to induce EH and affect inner ear function. OXFORD CENTRE FOR EVIDENCE-BASED MEDICINE 2011 LEVELS OF EVIDENCE: Level 5.


Assuntos
Orelha Interna , Hidropisia Endolinfática , Cobaias , Animais , Desamino Arginina Vasopressina/farmacologia , Transdução de Sinais , Hidropisia Endolinfática/induzido quimicamente , Cóclea
3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-463282

RESUMO

Robust severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in nasal turbinate (NT) accounts for high viral transmissibility, yet whether neutralizing IgA antibodies can control it remains unknown. Here, we evaluated receptor binding domain (RBD)-specific monomeric B8-mIgA1 and B8-mIgA2, and dimeric B8-dIgA1 and B8-dIgA2 against intranasal SARS-CoV-2 challenge in Syrian hamsters. These antibodies exhibited comparably potent neutralization against authentic virus by competing with human angiotensin converting enzyme-2 (ACE2) receptor for RBD binding. While reducing viruses in lungs, pre-exposure intranasal B8-dIgA1 or B8-dIgA2 led to 81-fold more infectious viruses and severer damage in NT than placebo. Virus-bound B8-dIgA1 and B8-dIgA2 could engage CD209 as an alternative receptor for entry into ACE2-negative cells and allowed viral cell-to-cell transmission. Cryo-EM revealed B8 as a class II neutralizing antibody binding trimeric RBDs in 3-up or 2-up/1-down conformation. Therefore, RBD-specific neutralizing dIgA engages an unexpected action for enhanced SARS-CoV-2 nasal infection and injury in Syrian hamsters.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-307439

RESUMO

In recognizing the host cellular receptor and mediating fusion of virus and cell membranes, the spike (S) glycoprotein of coronaviruses is the most critical viral protein for cross-species transmission and infection. Here we determined the cryo-EM structures of the spikes from bat (RaTG13) and pangolin (PCoV_GX) coronaviruses, which are closely related to SARS-CoV-2. All three receptor-binding domains (RBDs) of these two spike trimers are in the "down" conformation, indicating they are more prone to adopt this receptor-binding inactive state. However, we found that the PCoV_GX, but not the RaTG13, spike is comparable to the SARS-CoV-2 spike in binding the human ACE2 receptor and supporting pseudovirus cell entry. Through structure and sequence comparisons, we identified critical residues in the RBD that underlie the different activities of the RaTG13 and PCoV_GX/SARS-CoV-2 spikes and propose that N-linked glycans serve as conformational control elements of the RBD. These results collectively indicate that strong RBD-ACE2 binding and efficient RBD conformational sampling are required for the evolution of SARS-CoV-2 to gain highly efficient infection.

5.
Chinese Journal of Orthopaedics ; (12): 266-272, 2013.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-432166

RESUMO

Objective To explore the anatomical morphology of femoral trochlear groove and the difference between normal males and females.Methods Eighty healthy volunteers were recruited,including 42 males and 38 females with an average age of 36.2 years (range,21-55 years).All the volunteers without knee unstabilization,pain and wound.CT scan of right femurs were performed and 3-D model were reconstructed.The anatomical parameters of right femoral trochlear groove were measured,which included transepicondylar axis,medial and lateral length of trochlear groove,medial and lateral condylar height,sulcus angle,depth of trochlear groove,transcondylar axis,anterior femoral condylar angle,trochlear groove position,and then compared the morphologic difference of trochlear groove between males and females.Results The average width of transepicondylar axis was 79.21±3.80 mm for males and 70.73±2.91 mm for females (t=-53.40,P=0.00).The minimum sulcus angle was acquired at 45° flexion for males and 42° flexion for females.It was 133.92°±4.76° for males and 132.71°±4.36° for females.The maximum length of transepicondylar axis was acquired at 87° flexion for males and 90° flexion for females.It was 42.36±3.48 mm for males and 39.03 ±3.36 mm for females.The anterior femoral condylar angle decreased with the increasing flexion angle of knee (P>0.05).The position of the trochlear groove moved laterally with the increasing flexion angle of knee (P>0.05).Conclusion There is no significant difference between male and female in the geometry of femoral trochlear groove,however there is a significant difference in sizes.Therefore,during design the knee prosthesis,close approximation of size is essential,while gender differences in morphology need not be considered a factor.

6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-262168

RESUMO

<p><b>OBJECTIVE</b>To develop a HPLC method for determining the content of protopine in Corydalis racemose.</p><p><b>METHOD</b>Analysis was performed on a Gemini C18 column (4.6 mm x 250 mm, 5 microm) eluted with acetonitrile-water containing 0.8% triethylamine and 3% acetic acid acetum (20:80) as the mobile phase. The flow rate was 1.0 mL x min(-1). The detection wavelength was 289 nm.</p><p><b>RESULT</b>The average content of protopine in Herb of Racemose Corydalis was 0.905%. The calibration curve of protopine was linear between 0.124-1.36 microg (r = 0.9999). The average recovery was 98.49% with RSD 1.9%.</p><p><b>CONCLUSION</b>This method is simple, reproducible and can be used to determine the content of protopine in C. racemose.</p>


Assuntos
Benzofenantridinas , Alcaloides de Berberina , Cromatografia Líquida de Alta Pressão , Métodos , Corydalis , Química , Medicamentos de Ervas Chinesas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...